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We considered the Lagrangian in polar coordinates for a single particle of mass 𝑚 acted 
upon by a conservative force in two dimensions.  The Lagrangian is ℒ�𝑟, �̇�,𝜙, �̇�, 𝑡� =
𝑚
2
��̇�2 + 𝑟2�̇�2� − 𝑈(𝑟,𝜙).  The Euler-Lagrange equation for 𝑟 yields −𝜕𝜕

𝜕𝜕
= 𝑚��̈� − 𝑟�̇�2�.  

This is Newton’s second law for radial motion, where the first term on the right hand side is 
the radial acceleration, while the second is the centripetal acceleration.  The Euler-Lagrange 
equation for 𝜑 yields −𝜕𝜕

𝜕𝜕
= 𝑑

𝑑𝑑
(𝑚𝑟2�̇�).  This is a statement that the torque acting on the 

particle �− 𝜕𝜕
𝜕𝜕

= 𝑟𝐹𝜕� is equal to the time rate of change of the angular momentum.  In other 

words it is a statement of Newton’s second law for rotational motion. 

Constrained systems are common in physics, and their dynamics can be advantageously 
solved by the Lagrangian method.  Examples include the pendulum, the Atwood machine, a 
rigid body, gas particles trapped in a box, a rolling object, and a bead on a wire.  We 
considered the pendulum problem in detail.  The constraint is that the length of the pendulum 
ℓ is fixed, so that the x- and y-coordinates of the bob are not independent, but constrained so 
that ℓ = �𝑥2 + 𝑦2.  We can incorporate this constraint by adopting a new independent 
variable to describe the position of the bob, namely the angle that the pendulum makes with 
the vertical, 𝜙.  In terms of this generalized coordinate, the Lagrangian becomes ℒ�𝜙, �̇�� =
𝑚
2
ℓ2�̇�2 − 𝑚𝑚ℓ(1 − cos𝜙).  Lagrange’s equation gives −𝑚𝑚ℓ sin𝜙 = 𝑚ℓ2�̈�, which relates 

the torque due to gravity on the bob to the time rate of change of the angular momentum of 
the bob, or the moment of inertia (𝑚ℓ2) times the angular acceleration (�̈�).  Note that the 
force of constraint (namely the tension in the rod supporting the bob) never played a role in 
the analysis (whereas it plays an important role in the traditional Newtonian approach).  Once 
the appropriate generalized coordinate is identified, the associated constraining force 
disappears from the discussion! 

Generalized coordinates and constrained systems are important for Lagrangian dynamics.  
Consider a system consisting of N particles, with positions 𝑟𝛼���⃗ , with 𝛼 = 1, …𝑁.  The 
parameters 𝑞1, 𝑞2, … 𝑞𝑛 are a set of generalized coordinates if each position 𝑟𝛼���⃗  can be 
expressed as a function of 𝑞1,𝑞2, … 𝑞𝑛, and possibly time t as, 𝑟𝛼���⃗ = 𝑟𝛼���⃗ (𝑞1,𝑞2, … 𝑞𝑛, 𝑡)for 
𝛼 = 1, …𝑁, and the inverse 𝑞𝑖 = 𝑞𝑖(𝑟1���⃗ , 𝑟2���⃗ , … 𝑟𝑁����⃗ , 𝑡) for 𝑖 = 1, 2, …𝑛 can also be written.  For 
particles in three dimensions, 𝑛 ≤ 3𝑁.  If 𝑛 < 3𝑁, then the system is said to be constrained.  
The number of degrees of freedom of a system is the number of coordinates that can be 
independently varied in a small displacement.  The simple pendulum is constrained and has 
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one degree of freedom.  The double pendulum is constrained and has two degrees of 
freedom.  One can show (the proof is in Taylor, section 7.4) that constrained systems with 
holonomic constraints obey the Lagrange equations when their Lagrangian is written in terms 
of the generalized coordinates of the system.  Holonomic constraints are those which impose 
relations between only the coordinates of the system.  Non-holonomic constraints cannot be 
reduced to relations only between the coordinates.  For example consider a rolling wheel on a 
fixed surface – the rolling constraint says that the velocity at the point of contact is zero.  
This is a condition on a quantity other than the coordinates of the particles. 

 


